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We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard
three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons.
The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations,
supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions
with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the
Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the “devil’s
staircase” scenario [Eduardo Fradkin et al. Phys. Rev. B 69, 224415 (2004)], and is therefore expected to
produce fractal variations of the ground-state flux.
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The study of hard-core dimer coverings has a long
history. From the mapping to Pfaffians and determinants
by Kasteleyn [1,2], the solution of two-dimensional Ising
models [3], the height representation and its continuum
limit [4], or the connection to the Coulomb gas and
conformal field theory [5,6], dimer models have found
numerous applications in various fields of statistical phys-
ics. Motivated by the physics of resonating valence bond
systems, Rokhsar and Kivelson (RK) [7] added quantum
dynamics to the dimer model, leading to the so-called
quantum dimer model (QDM), which later led to tractable
models with rich phase diagrams closely related to lattice
gauge theories [8]. Importantly, QDMs appeared in differ-
ent contexts when describing the dynamics in a constrained
low-energy manifold, such as in frustrated Ising models in
weak transverse fields [9]. QDMs also gained a new
dimension with the discovery of liquid phases with
topological order in nonbipartite lattices [10,11], where
they shed some light on the long-sought resonating valence
bond liquids. This field also benefited from recent progress
in making quantitative connections between spin-1=2
Heisenberg magnets with quantum disordered ground
states and QDMs [12,13].
In most QDMs studied so far, a kinetic term (associated

with on-plaquette dimer flips) competes with a diagonal
term proportional to the number of such “flippable”
plaquettes. When the kinetic and the potential terms are
equal at the so-called RK point, the ground states are
exactly known [7]. In the height language, appropriate for
bipartite lattices, such a RK point corresponds to a
transition from a “flat” phase to a maximal slope phase
[14]. A richer behavior is however expected near that point
for more generic interactions between dimers [16,17]. In

particular, within a field theoretic approach, a devil’s
staircase of commensurate and incommensurate phases is
predicted [16–18], corresponding to a fractal tilt variation
as a function of the Hamiltonian parameters.
In this Letter, we show that a natural generalization of the

hexagonal lattice QDM [19,20] provides a microscopic
model with this phase structure. We analyze the two-
parameter phase diagram spanned by the standard potential
term counting flippable plaquettes and another term count-
ing dimer-free plaquettes. The model is studied perturba-
tively near the RK point and with quantum Monte Carlo
(QMC) simulations elsewhere, supplemented by variational
arguments. We observe a sequence of closely spaced phase
transitions with a gradual change of the flux density and
crystalline structures with strongly varying unit cell sizes in
agreement with the scenario of Refs. [16,17].
Model.—Let us consider a QDM with the standard

kinetic term and four potential terms:

ð1Þ

where the operator n̂j counts the total number of hexagonal
plaquettes with j dimers (called a j-plaquette). Because
of the two sum rules [20,21] n̂0 þ n̂1 þ n̂2 þ n̂3 ¼ N
and 2n̂0 þ n̂1 − n̂3 ¼ 0, these potential terms are not
independent and we hence choose to keep only n̂0 and
n̂3. Also, we denote densities ρj ¼ hn̂ji=N in the form
~ρ ¼ ðρ0; ρ1; ρ2; ρ3Þ and fix t ¼ 1, unless specified differ-
ently. The model studied by Moessner et al. [19] has
v0 ¼ 0, while the two models ðv0 ¼ �1; v3 ¼ 0Þ are
relevant for Ising string nets [28]. We study rectangular
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clusters with periodic boundary conditions and N ¼ Lx ×
Ly hexagonal plaquettes.
Our analysis relies on the notion of flux: dimer coverings

can be grouped into topological sectors [21] labeled by
two integer fluxes ðFx; FyÞ, which are invariant under
local dimer moves. As discussed below, for ground states,
one of the two fluxes is zero and we can restrict ourselves to
Fx ¼ 0 and work with f≔Fy=Ly ≥ 0.
Classical limit.—Let us consider the classical limit

t ¼ 0. Setting v0 ¼ sin α, v3 ¼ cos α, and defining
α1 ¼ arctanð−2Þ, α2 ¼ π=2 − α1, one finds three crystals
as α is varied: (i) for α ∈ ½π=2; α1�, the threefold degenerate
staggered crystals (nonflippable configurations) with maxi-
mum flux f ¼ 2, vanishing energy, and ~ρ ¼ ð0; 0; 1; 0Þ,
(ii) for α ∈ ½α1; α2�, the (threefold degenerate) star crystal in
the f ¼ 0 sector (Fig. 1) with ~ρ ¼ ð1=3; 0; 0; 2=3Þ, (iii) for
α ∈ ½α2; π=2�, a 12-fold degenerate crystal [29] denoted S2,
within the f ¼ 1=2 sector, with ~ρ ¼ ð0; 1=2; 0; 1=2Þ. The
point α ¼ π=2 is highly degenerate, since any configuration
without 0-plaquettes is a ground state, and such states exist
in all flux sectors. This degeneracy is lifted when t ≠ 0,
leading to a nontrivial ground-state flux variation as
discussed below.
Phase diagram.—We studied the phase diagram with

QMC simulations using the mapping to an Ising-type

model described in Refs. [19–21]. Specifically, results
displayed in Fig. 1 have been obtained for a torus with
60 × 60 plaquettes, flux sectors f ¼ 0; 1

10
; 2
10
;…; 2, inverse

temperature β ¼ 9.6, and imaginary-time step Δβ ¼ 0.01.
(1) f ¼ 2. In this region, ground states are isolated

staggered configurations with vanishing energy. The
Hamiltonian is positive definite in the upper right quadrant,
and the f ¼ 2 region also extends to a large part of the
lower right quadrant, down to the boundary with the f ¼ 0
sector.
(2) f ¼ 0. The star and plaquette crystals found in this

region also exist in the v3-only model [19,20] and are
separated by a first-order transition (dashed line). The star
phase is adiabatically connected to the (threefold degen-
erate) crystalline configurations found for t ¼ 0. The latter
simultaneously maximize the number of 3- and 0-
plaquettes, and the star phase thus fills a large part of
the ðv3 < 0; v0 < 0Þ-quadrant and also extends into the
neighboring quadrants. On the v0 ¼ 0 line, the star phase
gives way to the plaquette phase through a first-order
transition at v3 ¼ −0.228ð2Þ [19,20]. The plaquette phase
is defined by continuity with the “ideal” plaquette state,
which is an uncorrelated product of resonating 3-plaquettes

. In the vicinity of the RK point, as is already
the case for Ĥðt; v0 ¼ 0; v3Þ [20], the large (diverging)
correlation length makes it difficult to discriminate numeri-
cally between the star and plaquette phases, hence the
question mark in Fig. 1. This phenomenon is likely to be
related to the Uð1Þ regime observed in the square lattice
QDM [15].
(3) f ¼ 1=2. In most of this region, the system forms a

12-fold degenerate crystalline phase, adiabatically con-
nected to the S2 configuration.
(4) 1=2 < f < 2. This is the most interesting part of the

phase diagram, which we call the fan region. To understand
the flux variations taking place there, we recall that any
dimer configuration can be represented equivalently as a
configuration of nonintersecting strings on the hexagonal
lattice [21]. For Fx ¼ 0, these are Ns ¼ ð2Ly − FyÞ=3
closed loops along the toroidal x direction of the lattice.
Starting from the staggered dimer covering (f ¼ 2) dis-
played in Fig. 1, on each string path, empty and covered
edges alternate. The corresponding dimer covering is
obtained by doing so-called loop updates, i.e., exchanging
empty and covered edges along the string paths. Each string
reduces the flux Fy by 3 units. In reverse, starting from an
arbitrary configuration, the strings correspond to paths
where dimer-free horizontal edges alternate with dimers
on tilted edges (see Fig. 2). The number of 3-plaquettes
along a string is maximized if it runs parallel to one of the
three edge orientations of the lattice. This is why, for
v3 < 1, strings are on average parallel to one of the edge
orientations and why ground states are found in sectors
with one vanishing flux quantum number (Fx vanishes for
strings winding in the x direction only). Strings can reduce

FIG. 1 (color online). Schematic phase diagram from QMC
simulations (Lx ¼ Ly ¼ 60). The ðv0; v3Þ plane is divided into
five regions: a staggered phase with the maximal flux (f ¼ 2), the
star and the plaquette phases (f ¼ 0), the S2 phase (f ¼ 1=2), and
the fan region, containing a cascade of flux sectors 1=2 ≤ f < 2.
The plaquette color indicates the dimer density (same scale as
in Figs. 2 and 3).
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their kinetic energy by oscillating in the perpendicular
direction, limited by the string noncrossing condition and
by avoidance of 0-plaquettes for large v0 (see Fig. 2).
When v3 is decreased below 1, the staggered configu-

ration is destabilized by string insertion. At low string
densities (f slightly below 2) strings are far apart and
strongly delocalized. A reduction of v3 causes an increase
of ρ3, which is realized through a higher string density
(decrease of the flux) and “stiffer” strings (reduced lateral
motion). Each time a new string is added upon decreasing
v3, the increased ρ3 compensates the energy cost associated
with the higher degree of localization. When increasing v0
for a fixed v3 < 1, configurations with more 0-plaquettes
become less favorable such that string delocalization gets
more restricted. At certain transition points, it becomes
favorable to remove a string (flux increase), freeing some
space for other strings to fluctuate more freely. When ρ0
becomes negligible, a further increase of v0 has no effect.
This regime, where the isoflux lines become parallel, is
equivalent to perturbing the (degenerate) classical point
ðt; v0; v3Þ ¼ ð0; 1; 0Þ with a weak t and v3, where a “fan”-
like phase diagram similar to that described in Ref. [30] is
expected.
For f ≲ 1 the average interstring distance is sufficiently

low that the ground states are dominated by straight-string
configurations. For generic fluxes, one expects complex
correlated string states (some are described in Ref. [21]),
but simple spatial structures involving horizontal chains of
hexagons with higher densities of 3-plaquettes are also
observed in some low-flux parts of the fan (see Fig. 3).
These can be qualitatively understood in terms of the
following typical configurations of strings that are dynami-
cally constrained by the presence of neighboring strings: “S
strings” are static zigzag configurations (corresponding to
zigzag arrangements of 3-plaquettes, energetically favored
at large negative v3). With respect to such a reference

configuration, “H strings” can fluctuate in every second
column of hexagons, up and down by one row. “F strings”
are the most mobile among the three classes, and are
allowed to fluctuate up and down by one row in every
column as indicated by arrows in Fig. 2. At f ¼ 0.8 and 1,
for instance, we recognize periodic arrays of H (F) strings
at distance d ¼ 2.5 (d ¼ 3) [31], as shown in Fig. 3.
Importantly, no 0-plaquettes are generated if the above
strings have minimum interstring distances of dmin

S−S ¼ 2,
dmin
H−H ¼ 2.5, dmin

F−F ¼ 3, and dmin
F−H ¼ 2.75. These building

blocks are therefore appropriate to describe qualitatively
the large-v0 and f ≲ 1 part of the fan [21].
Finally, simple variational arguments provide approxi-

mate expressions for the flux transition lines. For example,
one can compute the energy change associated with the
insertion of an H string in a perfect S2 crystal (S strings at
distance 2), which corresponds to an infinitesimal increase
of the flux density (due to the different dmin, five S strings
should be replaced by four H strings to keep the total
system size constant [21]). This yields v3 ¼ −1 for the
transition towards the fan region at large v0, in reasonable
agreement with the numerics.
As the interplay between v3 and v0 is especially complex

for low v0 (when ρ0 is not negligible), we analyzed the
v3 ¼ 0 line with finer flux steps. Starting from very large v0
the flux decreases (staying close to f ¼ 0.8) down to
v0 ≃ 2.4 where it drops to f ¼ 0. This flux drop is a
generic feature of the interface with the f ¼ 0 region.
Toward the RK point the ground-state flux sectors get
pinched, a feature that we now discuss.
Perturbativeanalysis.—At theRKpoint, thegroundstates

of all flux sectors are degenerate, and are equal-amplitude
superpositions of all dimer configurations in the correspond-
ing sector. At first order in v0=t and ðv3 − 1Þ=t, the energy
density in sector f reads eðfÞ ¼ v0ρ0ðfÞ þ ðv3 − 1Þρ3ðfÞ.

FIG. 2 (color online). Left: a configuration of three strings and
the corresponding dimer covering, with 0- and 3-plaquettes. Left
bottom and right: three variational classes of dynamically con-
strained strings, called S,H, and F strings. S strings are in a static
zigzag configuration, H strings (F strings) are allowed to
fluctuate by one row in every second column (in every column).
Arrows indicate the fluctuations of the strings, each correspond-
ing to a 3-plaquette flip. Dimer densities are indicated according
to the color scale of Fig. 3. For H and F strings, the shown
dimer densities correspond to a superposition of the allowed
configurations.
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FIG. 3 (color online). Dimer density per hexagon in the fan
region, according to the color scale on the right.
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We compute the j-plaquette densities ρjðfÞ as expectation
values of the operators n̂j (diagonal in the dimer
basis) with respect to the unperturbed RK states, using an
analytical transfer-matrix approach [21,32]. Setting
v0 ¼ sin θ and v3 − 1 ¼ cos θ, we minimize eðfÞ for each
value of θ to obtain fðθÞ as displayed in Fig. 4. A
continuous variation of f is found in the interval
θ ∈ ½π=2; θ1 ≃ 1.84695�, which corresponds to the fan
region in the phase diagram of Fig. 1. Interestingly, f jumps
discontinuously to zero at θ1. For θ ∈ ½θ1; θ2 ≃ 4.8268�,
the ground state is in the f ¼ 0 flux sector, and it
jumps to f ¼ 2 for θ ∈ ½θ2; π=2�. Note that, at this
order, wave functions remain RK states, which are
translation-invariant dimer liquids with algebraic correla-
tions (for f < 2).
Field theory.—To connect our perturbative and numeri-

cal results concerning the flux variations, let us turn to the
height representation [4,18,33–35]. Dimer coverings are
mapped to membranes embedded in a cubic lattice, whose
average tilt is directly related to the flux [36]. In this
language the QDM becomes a quantum roughening prob-
lem [18]. Long-distance properties are captured by taking
the continuum limit of the height model and, in our case,
the RK point is described by a massless Gaussian field
theory [35]. Fradkin et al. [16] and Vishwanath et al. [17]
discussed how the action is modified in the presence of
generic perturbations, through a renormalization group
(RG) analysis [37] predicting nonvanishing flux phases.
A cubic interaction for the height, with three spatial
derivatives, is the leading term favoring f ≠ 0. In our
problem we observe that v0 induces a flux density
perpendicular to some edges of the hexagonal lattice.
This implies that the sign of the corresponding coupling

is negative in the notation of Ref. [16]. At this stage, the
system would be gapless with a linear dispersion at small
momenta. However, the site positions and the microscopic
heights are both discrete and form a 3D lattice L. For the
(coarse-grained) height field, potential terms that respect
the symmetries of L will be generated upon integration
over the short-distance fluctuations. They can be written as

Vðh; ~rÞ ¼ P
K¼ðK0; ~KÞ∈L�VKeiðK0hþ ~K·~rÞ, where the sum runs

over the reciprocal lattice vectors of L. When the average
flux (tilt) is commensurate with the lattice, it corresponds to
some reciprocal lattice vectorK and the associated locking
term VK is then asymptotically relevant in the RG [16],
leading to gapped crystals. However, as explained in
Ref. [16], these gaps can become exponentially small in
1=f close to the RK point. Since crystals for rational fluxes
with small denominators are more stable, their range of
attraction in the RG is larger compared to others and, for the
phase diagram close to the RK point, one thus expects a
fractal succession of commensurate phases—a “devil’s
staircase.” At the smaller fluxes, stronger quantum fluctua-
tions can outweigh locking terms and impose irrational flux
densities such that gapless incommensurate structures are
possible.
Conclusion.—The extended QDM (1) is the first candi-

date for a microscopic realization of the “Cantor deconfine-
ment” scenario, which predicts that a fractal succession of
flux sectors occurs near the RK point. Whether the flux
varies continuously, in a fractal way, or assumes only a
finite number of values [38] is impossible to answer with
QMC simulations. Indeed, although we can simulate large
lattices, available flux sectors correspond to a small set of
rational values. Additionally, intrasector gaps become very
small near the RK point and render simulations difficult.
However, the fact that all flux sectors for 1=2 < f < 2
occur in the QMC results and the width variations of the
corresponding regions in the phase diagram plead in favor
of the realization of a fractal in the thermodynamic limit.
Finally, let us note that flux sequences found here cannot

occur for square lattice models with single-plaquette
Hamiltonians. In that case, the sum rule n0 ¼ n2 makes
any QDM with potential terms

P
jvjn̂j equivalent to the

original RK model, which lacks intermediate-flux phases.
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FIG. 4 (color online). Perturbation theory near the RK point.
Left: j-plaquette densities ρj as functions of the flux density f.
Right: ground-state flux density f as a function of the angle θ that
parametrizes the perturbation. The nontrivial region lies between
π=2 (transitionoutof thestaggeredphase)andθ1 ≃ 1.84695,where
f drops discontinuously from f1 ≃ 0.195654 to 0. The transition
from f ¼ 0 to f ¼ 2 occurs at θ2 ≃ 4.8268 (not shown).
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